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ABSTRACT expensive and remarkably ineffective: trained operators lose
Surveillance camera technologies have reached the point concentration and miss a high percentage of significant events

whereby networks of a thousand cameras are not uncommon. after only a few minutes. Consequently, there is a need for
Systems for collecting and storing the video generated by software for automated video surveillance [1], to assist hu-
such networks have been deployed operationally, and sophis- man inspection in the operation of surveillance networks.
ticated methods have been developed for interrogating indi- Most research in this area concentrates on computer vi-
vidual video streams. The principal contribution of this paper sion algorithms required to detect and interpret activity in
is a scalable method for processing video streams collectively, video. This previous work is limited to networks of at most
rather than on a per camera basis, which enables a coordi- tens of cameras. In this paper our focus is on networks with
nated approach to large-scale video surveillance. To realise between one hundred and one thousand cameras. Specifically
our ambition of thousand camera automated surveillance net- we have constructed and measured on-line approaches to the
works, we use distributed processing on a dedicated cluster. key activity topology problem for such networks. We measure
Our focus is on determining activity topology - the paths ob- scalability up to one thousand cameras, report whole-system
jects may take between cameras' fields of view. An accu- results for over one hundred cameras and explore how our ap-
rate estimate of activity topology is critical to many surveil- proach can be adapted to scale beyond one thousand cameras.
lance functions, including tracking targets through the net-
work, and may also provide a means for partitioning of dis- 2. ACTIVITY TOPOLOGY
tributed surveillance processing. We present several imple-
mentations using the exclusion algorithm to determine activ- The activity topology is a graph describing the observed (i.e.
ity topology. Measurements reported for the key system com- past) behaviour of target objects in the network. The edges
ponent demonstrate scalability to networks with a thousand in the activity topology describe the paths surveillance targets
cameras. Whole-system measurements are reported for ac- take between cameras' fields of view (nodes in the topology).
tual operation on over a hundred camera streams (this limit The edges may be weighted: with probabilities describing the
is based on the number of cameras and computers presently likelihood of targets moving from one camera to the other,
available to us, not scalability). Finally, we explore how to the density of such movement and/or the mean time taken to
scale our approach to support multi-thousand camera networks. so move. The current estimate of activity topology can be

Index Terms- Large-scale surveillance networks, Soft- used to predict future behaviour of targets from their current

ware architectures, Collaborative position discovery positions. This predictive function is useful in a number of
higher-level functions, including:

1. INTRODUCTION * Inter-camera tracking - Statistical approaches for track-
ing a target within a camera's field of view fail when

Video surveillance networks serve a number of purposes in- the target leaves that field of view. In such cases, a
cluding the protection of major facilities from terrorism and search is needed to discover in which camera the target
other threats. At the hardware level, it is now possible to build next appears. In the absence of activity topology, all
thousand camera networks at reasonable cost, using standard other cameras' fields of view must be searched (which
IP networking devices and IP video cameras. However, moni- is 0 (m2) for n cameras). Activity topology restricts the
toring surveillance networks through human inspection is both cameras to be searched to those adjacent to the current

This work was supported by ARC Discovery Grant DP0770482 and the camera, and may also enable the search to be prioritised
Government of South Australia PSRF scheme. according to likelihood of the target's next appearance.
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* Target following virtual cameras - Humans monitor- Another possible alternative is to rely on human operators to
ing a surveillance network find it extremely disorien- input the activity topology. Practical experience indicates this
tating to follow a target moving between fixed cam- is very unreliable; in addition to the problems above (rele-
eras. Nevertheless, fixed cameras are a pre-requisite for vant since human input is inherently an off-line approach),
most video processing, which is greatly degraded when humans' ability to predict the activity topology from the cam-
cameras are moving. A solution is to provide operators era configuration is quite poor, in part because recording of
with "virtual cameras" that follow each target, switch- the actual spatial relationships between cameras (and other
ing between physical cameras automatically. The activ- feature) is rarely sufficiently accurate, and also because such
ity topology is use to determine candidates for the next relationships only partly determine activity topology, since
camera to switch to. they do not account for autonomy in the behaviour of people

and other objects under surveillance.
* Camera placement optimisation - High density of move-
ment along an activity topology edge militates for the 3. SURVEILLANCE NETWORK PERFORMANCE
placement of additional cameras between the cameras
connected by the edge. In contrast, cameras having no Our interest is in surveillance networks for threat detection.
incident edges or only edges with low movement den- Threat detection surveillance networks operate continuously
sity should probably be moved to locations in which in an on-line mode where they attempt to detect undesirable
they can be more effective. behaviour from observations in video streams, and to bring

this to human operators' attention as soon as possible. Soft-
In addition to its importance in supportingfunctional require- ware fo such survelancentwor as at as to ovrl

ware for such surveillance networks has at least two overall
ments such as the above, activity topology potentially pro-
vides a basis for partitioning the processing in a surveillance
network, thus providing a generic tool for achieving the sys- * Efficiency - to maximise the surveillance capacity (num-
temic requirement of scalability in distributed surveillance ber of cameras that the network can support) on given
processing. The idea is that the cameras in the network are processing capability (CPUs, memory, network etc.).
partitioned into near strongly connected components within .Scalability - to permit increased surveillance capacity
the activity topology. These are sub-graphs of the topology through the addition of processing capability, with the
where there are many edges between the nodes within the sub- increased surveillance capacity ideally in proportion to
graph, and few edges between sub-graphs. This partitioning the increase in processing capability.
enables a divide and conquer approach whereby most pro-
cessing (typically with 0(n2) time and space complexity for Scalability typically reaches a limit, presenting a third goal:
n cameras) occurs within sub-graphs, with results from sub- .Scalability Limit - to maximise the surveillance capac-
graphs then merged, via algorithms having complexity deter- it at which it ceases to increase surveillance capacity
mined by the (small) number of edges between sub-graphs. y . . .

There are a number of reasons why activity topology de-
mands an online solution, as opposed to determining topology To evaluate the performance of automated surveillance net-
off-line prior to surveillance network commissioning: work software in relation to these goals, we define:

1. The system must remain operational whilst the activ- 1. Steady-state Throughput - the quantity (e.g. frames per
ity topology changes, as cameras are added, removed second) that a given surveillance network can process
and repositioned, and other changes occur in the facil- in on-line mode, once it has reached steady state oper-
ity (e.g. a door is unlocked). Such changes are more ation. This is the key metric; essentially it determines a

common than might be expected, Also, apparently mi- surveillance network's surveillance capacity.
nor changes can cause major alterations in the topology. 2. Detection Delay - the delay between physical occur-

rence of an event captured in a video stream and the
2. By definition, an off-line process must run to comple- incoroan event within the sureillance

tion before the topology may be used. It may take a putation(ie thativit tolg estimate upae
long time for such a process to obtain information about tonrefle theent)Wilstosurveianenetwokstar
areas that are seldom visited, simply due to paucity no real tie stems(a least when used for threat de-
of information about such areas. In contrast, an on- tetio) detei intruers ha n ur ftr they he' ~~~~tection), detecting intruders half an hour after they have
line process will rapidly acquire information about fre- lf h uligi o cetbe
quently visited areas, and make that information im-
mediately available, whilst continuing to acquire infor- Our experiments involve measuring the steady state through-
mation about seldom visited areas, as and when those put of different network configurations in terms of standard-
areas are visited. ised video streams with 320 by 240 pixel frames and subject
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to meeting constraints in terms offrame rate, detection delay 4.2. Temporal Padding
and memory usage. Specifically:

The technique previously described will detect adjacency of
1. Frame rate of at least 10 frames per second per camera. cameras having overlapping fields of view, and thus estimate

activity topology for networks of such cameras. Whilst this
is useful, in many surveillance networks there are few if any

3. Each processing node must have a known maximum overlaps between cameras, and in fact regions between cam-
memory requirement, which is not exceeded no matter eras which are not within any camera's field of view.
how long the system runs. To deal with this scenario, we apply temporal padding to

the (spatially) padded occupancy data, such that in the tempo-
The memory requirement constraint is needed so that we can rally and spatially padded data for a point in time, a window
provision hardware with enough memory to avoid paging (and is considered occupied if is occupied in the spatially padded
the consequent dramatic deterioration in performance). data at any point in time within some tolerance parameter. We

then redefine the right had side of the exclusion test (wi Ew2)
4. EXCLUSION to use the temporally and spatially padded data. Notice this

also overcomes clock skew between cameras.
The basis of exclusion is the very simple observation that:

If one camera's field of view is occupied and an- 4.3. Accumulation of Evidence for Exclusion
other camera'sfield ofview is simultaneously un-
occupied, then the two cameras cannot be ob- Whilst a single exclusion is in principle enough to rule out a
serving the same space. potential relationship between windows, in practice the cal-

culation of occupancy is not perfect and it is wise to be more
Occurrences of this situation are termed exclusions and con- conservative. Therefore, we consider each exclusion (wi E
stitute negative evidence refuting potential connections in ac- W2 = True) as evidence against adjacency of the windows
tivity topology. This simple exclusion principle can be devel- w1 and w2. To accumulate this evidence we count both ex-
oped into a practical activity topology estimation technique, clusion opportunities (those times when w1 is occupied) and
even for the case where there is no overlap between the fields detected exclusions (those points in time when w1 E w2 =

of view of adjacent cameras. True) and consider the ratio between the two (note that the
count of detected exclusions must always be less than or equal

4.1. Segmentation and Spatial Padding to the count of exclusion opportunities). Ratios close to 1 for
sufficiently large exclusion opportunities provide strong evi-

Instead of considering each camera as a unit of view, we seg- dence against adjacency of the given windows.
ment each field of view into a grid of windows, and then apply
exclusion between windows, rather than between cameras. In
the extreme, windows would be individual pixels, but we have 5. INITIAL OFF-LINE SYSTEM
found that 40 x 40 pixel windows provide enough resolution
to accurately recover overlapping camera regions. At each The initial system architecture is shown in Figure 1. Except-
point in time, we perform background subtraction and lowest ing the cameras, all processing occurs on a single computer.
visible extent calculations to determine the occupancy status
of each window. We do not currently include other measure- 5. 1. Implementation
ments such as appearance or optical flow, as these can be un-
reliable for small targets and the challenging environmental As seen in Figure 1, processing conceptually occurs in a pipe-
conditions in which surveillance cameras often operate. line. However, since the intention at this stage is to ver-

Since windows are not points, it is possible that two win- ify functionality and establish the ratio of processing require-
dows actually observing the same scene can be only partially ments for the different stages, we actually run the first three
overlapped such that one is occupied and the other simulta- stages on video footage, store the results in files, then run the
neously unoccupied, leading to a false exclusion of the ac- last two stages on those files. This is not an on-line system in
tual correspondence between the windows. To deal with this, any sense so we do not measure its throughput.
we calculate (spatially) padded occupancy for each window, After decompressing JPEG encoded frames sent by cam-
whereby a window is considered occupied if it or any of its ad- eras, the system uses the Stauffer and Grimson background
jacent windows (within the same camera) are occupied. Then subtraction method [2] to identify the foreground component
we define an exclusion to arise between windows w1 and w2 of each frame. The next pipe-line stage, occupancy detec-
only if w1 is true in (non-padded) occupancy data and w2 is tion, derives a single occupied window for each foreground
simultaneously false in padded occupancy data. Notice that blob, using a connected components approach and taking the
this operation, which we write w1 e w2, is asymmetric, midpoint of the lower edge of the bounding box for the blob.
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Fig. 1. Baseline System Architecture.

Fig. 2. Video feeds after running exclusion on one hour of footage from cameras spread across a university campus. The
cameras are arranged on screen so that related cameras are near each other.

This midpoint corresponds approximately to the lowest vis- Notice that the memory requirements for both Eij and
ible extent of the blob. This pipe-line stage generates both Oij are O(n2) integer counts for n cameras. Two strategies
occupancy and padded occtipancy data for the next stage. are implemented to reduce actual memory requirements:

The next pipe-line stage, exclusion is the heart of the ap- 1 BF 1L Byte-sized counts are used iLnstead of words. Whenproach. Two integer matrices maintain exclusion counts, £ij a 0 count overflows it is halved as are any other
and exclusion opportunity counts Oij for each pair of win- counts in the same row which are greater than half the
dows. All matrix elements are initialised to 0. Oij is in-
cremented whenever it is possible to evalutate the exclusion aximum value.sTon mintaintheE s ha ivariant, the corresponLding Oir counts are also halved.w)i e i , which requires that wi is occupied and that occu-
pancy data are available (e.g. not missing due to a camera 2. Run-length encoding is used to provide sparse repre-
being off-line etc.) for all points needed to calculate padded sentations of the Eij and 0ij matrices.
occupancy for wj. Ei is incremented if ij is incremented
and wi e w2= True. Thus we can calculate the likelihood Thefna pipelin sage tplg visual atn e a->
of non-exclusion between vi and w as: jj J>a

C*, with C* set to the empirically determined threshold 0.8.
0-E~ These inferred adjacencies are then used to visualise edges in

Cij = (1) the topology, such as shown in Figure 2, which we have man-
oij ually verified accords with the actual overlap between cam-

However, when windows are occupied only a small number eras. The footage shown in Figure 2 contains indoor and
of times, the above is dominated by noise, so we use: outdoor areas, and periods of both high activity (when stu-

dents are moving between lectures) and low activity (lectures
c;j yylx mm 1 log(0ij) () in progress).

., . s , 1 . . . 1 1 1 . 1 ~5.2. PelrfolrmLancLe Chalractelristics
wher 0lWWef isJ a n1Umber ofJWdeetion empiricl%JldlaJllydetermined1 111W
to result inL reliablLe exclusionL calLculationl. We set this to 20 inl We applLied this initial system[ to process 2 hours of lFootage
our experiments, from each of 83 cameras at approximately 15S frames per sec-
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ond, then measured the fraction of time taken by the different x Detection Pipeline 10 FPS
pipe-line stages. Processing for the first three stages took 51
hours, whereas the last two stages took 11 minutes. 50

45

6. DISTRIBUTED DETECTION PIPELINES L.

E
As described previously, the off-line system spends the ma- u 30
jority of its time performing background subtraction and other w 25

processing on individual video streams. This leads to the ob- ' 20
vious strategy of replicating the detection pipeline that runs E 15
this processing to multiple processors, so that streams from L.

different cameras are processed in parallel on different com- 5
puters. In addition, this system operates in on-line mode.

This architecture could also accommodate smart cameras 1 2 3 4 5 6 7 8 9 10 11
running the detection processing stages. We have not yet in- Cameras
vestigated this option however, as current cameras do not have
the processing capacity required.

Fig. 4. Detection Pipe-line Capacity
6.1. Implementation

The distributed detection pipe-lines (DDP) system, shown in core 1.86 Ghz Xeon as the central node and a Gigabit Ether-
Figure 3 is a relatively straightforward adaptation of the base- net switch connecting them together.
line system. Essentially the first three stages of the pipe-
line are replicated to multiple detection nodes and the final 6.2. Detection Pipe-line Performance
two pipe-line stages are implemented on a central node, with
TCP/IP connections carrying the data from the detection nodes Detection pipe-line nodes operate independently of the cen-
to the central node. The complications are: tral node, so the first task in establishing the system's perfor-

mance is to measure the throughput of a detection node (on
1. A file format is required for transmission of the occu- 2.0Ghz dual-core Opteron processors). Figure 4 shows the

pancy data over the network. We use an XML format total frame rate achieved when processing a number of hour
to provide flexibility for future extension of our system. long, 10 FPS camera streams. This test involves running an

2. Occupancy data for a given time point arrives from dif- instance (process) of the detection pipe-line per stream, all on
one detection node . It can be seen that each pipe-line losesferent detection nodes at different times. Therefore we th abltt. ette1 rmse eode aeacn

buffr icomigdta i T,secod tme rnge, ading the ability to meet the 10 frames per second per camera con-buffer incoming data in 711 second time ranges, adding stanypp
ic idtttat straint beyond 9 cameras - that is the system's surveillanceincoming data to the appropriate range, and pass the cpct sa ot9cmrs

whole of a range on to the exclusion pipeline stage ev-
ery T1 seconds (using the central node's wall clock).

6.3. System Performance - Measurement Complications
3. Once a given time range is processed, we ignore any

further occupancy data within that range (so the later So as to conduct repeatable experiments and assist us in ver-
arrival of that data has no effect on either °ij or Eij). ifying that the network is operating correctly in all instances,
To ensure that there is a high probability that occupancy our performance measurements use previously recorded video
data arrives in time to be counted, the central node does footage instead of live camera data. The extent to which
not start to process the first range until Td seconds after this renders the measurements artificial is quite limited: the
it starts. main problem is that it becomes possible to obtain input faster

than real-time (particularly when footage is missing within a
A consequence of the above is that, (with empirically deter- stream). To prevent this, when taking whole system measure-
mined values T> = 2 and Td = 5), we have a bounded de- ments, we introduce artificial delays in detection pipe-lines
tection delay of T7 + Td = 7 seconds, at the cost of ignoring to ensure that frames are not input faster than they would be
data that are too late to be processed within its proper range. in real-time. The overall effect of these delays is to reduce
We measure and report the fraction of this ignored data. measured surveillance capacity below the actual capacity.

We use a dedicated cluster to implement the distributed We currently have access to about 80 cameras. Therefore,
detection pipe-lines system, consisting of 16 2.0Ghz dual- we replicate footage where more than that number of inputs
core Opteron processors as the detection nodes, a single 8 are required. Again, the effect is to reduce measured surveil-
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6.4. System Pelrfolrmance-Results 1.8 -1t40

m 1.6 -1t20Colnfigurilng each detectionLnode with 7 cameras, we are able X W4
to instantiate a syste3. w ith15 detection nodes and thus 105 cte.2 tUre.
cameras. Measurements verify the following constraints, im- m - 80
plied by the implementation, are actually met: te 0.8 r 0/ 60e

th artifcial xc ortion betweenecopiesnof asstream. 2.4 18

C Detection node memory usage is bounded (and trivial). 0.2 20

* Central nrode m[emnory usage is bounded by the 400MB IZ 1, lb <,pwWw°X( e@e (
total size of the °ij and Eij matrices. Minutes Run Time

t Outputiframe rate(wFronh1 exclusion ono the cendtral 1.ode)
is 10 FPS, and input frame ratefis 10 FPS/canera, hence Fig 5. 105 Ca8era DDP System - Constraints Maintained
throughput is 10 FPS/camera.

inotedbydthevimusplnd tenhare actuaccrlalymnt: 06auto-

*gnored and thus and potential loss of accuracy. Thefraction measured survellance capacity of at least 105 caDdteras.
of lLate data sfor each Onute durina nm 7micnutes' Mrocessi
of the 1utcamera system(S shown in Fogure c.This remalns
below 1.2% for the whole period, thus isu1nlaikelryto have a 7. MULTI-Te HREADED EXCLUSION
signithroughputiversesffect.1 FP es/ em tea minutes occs o

eash rnoe prvousythedxiertecioaldreflayconstvraintis uo fecieesothespaTeditiuedd irse matixlrereesentemathionvusin runabi-
maial e nthi sytm bta t thcosleteofltn e dataubeings length-encoitscng.tThes resut estrablshd that ou system has

ignoredndbthusletrs ewnandpoeta8osoacracy.The frasttetctionmesredsreillanprcescaacty ofrr addtleast10 camneras.Th

beowr) 1T2e fogr tewls holeprida thuslis[l unlikel torlthave a Li 7.LMUalTbi-it HRAEistec oeXCILUSoNdrtxli h

period; at considerably below 400MB, this demonstrates the 8 processor cores on the central node, we developed a multi-
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threaded implementation of the central node processing. x Single-threaded A Multi-threaded 10 FPS

10000
7.1. Implementation

Within exclusion processing for a time range, eight worker ,
threads (one per core) are created, and these then process sep- X
arate regions in space. This yields a speed-up of 5x for the u
inner loop and 3x for overall operation of the central node. 100

7.2. Performance wE

Figure 6 shows throughput results for the central node, in both U. 10

single-threaded and multi-threaded versions. These measure-
ments involve the topology estimator operating on files con- 1
taining saved occupancy data. The points at which the curves 0 200 400 600 800 1000
cross the 10 FPS threshold suggest approximately a 400 cam- Cameras
era scalability limit for the single-threaded implementation
and just under 1,000 camera scalability limit for the multi-
threaded implementation. Fig. 6. Central Node Capacity

Interestingly, the scalability limit (for the multi-threaded
implementation) is determined as much by memory usage
as by CPU. With 1000 cameras (each having 108 windows), any time point is a failure to detect exclusions indicated
there are (108 * 1000)2 = 11, 664, 000, 000 byte-size counts by that data. Over time, assuming fairness in selecting
required in each of the Oij and Eij matrices. This gives a the subset to be inspected, this equates to detecting ex-
maximum memory requirement of 24GB, which is close to clusions more slowly than would be the case if all pairs
the practical limit of affordable memory with current tech- were inspected.
nology (our current central server has 12GB), and fixes the
scalability limit for this approach at about 1000 cameras.

1. A bootstrap partitioning is generated, for example from
8. TOWARDS DISTRIBUTED EXCLUSION the layer 2 switching topology of the IP network to

which the cameras are attached, or, if the initial num-
Multi-threading the exclusion based topology estimator raises ber of cameras is small enough, by running an unparti-
the limit to which the network can scale, but in order to pur- tioned exclusion algorithm on that network, then parti-
sue further improvements we need to distribute the exclusion tioning according to the activity topology estimate.
algorithm. Our fundamental (but as yet, unverified) hypoth-
esis is that strongly connected components within the activ- 2. Once bootstrapping is complete, and thereafter, the ex-
ity topology provide natural partitions for processing. It fol- isting cameras in the network are partitioned, albeit not
lows that an activity topology estimate provides a basis for a necessarily optimally. In addition to running the normal
divide-and-conquer approach to scaling surveillance compu- exclusion algorithm within each partition, the union of
tations. Clearly this requires elaboration when the computa- the occupancy data for all camera windows in the par-
tion to be partitioned is the activity estimator. We observe: tition is calculated for each point in time.

1. The task of estimating de novo the activity topology of 3. As new cameras are brought on-line, they are added to
a very large network (e.g. million camera) is unlikely in a nursery, in which they remain for some time (perhaps
practice. Instead, a very large network is likely to arise several days). The normal exclusion algorithm is run
by repeated extension of a previous smaller network, on all the cameras in the nursery. In addition, a triv-
and so activity topology can be estimated incremen- ially modified exclusion algorithm is run between each
tally, at each step using the previous estimate of activity nursery camera window and the union occupancy for
topology to partition processing for the large number of each existing partition, an approach we term union ex-
previously existing cameras, and unpartitioned process- clusion.
ing for the small number of additional cameras.

4. Periodically, the nursery is cleared by moving the nurs-
2. Whilst the exclusion algorithm requires comparison of ery cameras out to other partitions. Where the activity

0(m2) window pairs (for n windows) at each time point, topology within the nursery identifies one or more sub-
the only effect of ignoring a large subset of the pairs at sets of strongly connected cameras, new partitions are
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formed containing these subsets. Where a nursery cam- measurements on over a hundred camera streams (this limit
era is not part of such a subset, it instead joins the ex- is based on the number of cameras and computers presently
isting partition from which it is least strongly excluded available to us, not scalability). Finally, we suggest an ap-
(based on the union exclusion calculation). proach for distributed exclusion which has the potential to

scale to networks with tens of thousands of cameras.
5. Occasionally, existing partitions are reverted to nursery
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10. CONCLUSION

The main contribution of this paper is to report on the imple-
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ability to networks with a thousand cameras, and we report
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